Fundamental physical cellular constraints drive self-organization of tissues.
نویسندگان
چکیده
Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease.
منابع مشابه
Structural morphology and self-organization
This paper categorizes self-organization processes in nature into four categories: physics, mathematics, statics, and mechanics—abstracting these processes into simplified analytical methods. It is also an investigation into some fundamental principles concerning the logic of form optimization in nature in relation to special and physical constraints. One of the chief aims of this study is to m...
متن کاملMulti-objective Optimization of Hybrid Carbon/Glass Fiber Reinforced Epoxy Composite Automotive Drive Shaft
In design and fabricate drive shafts with high value of fundamental natural frequency that represented high value of critical speed; using composite materials instead of typical metallic materials could provide longer length shafts with lighter weight. In this paper, multi-objective optimization (MOP) of a composite drive shaft is performed considering three conflicting objectives: fundamental ...
متن کاملFeatures and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly
One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....
متن کاملA Fetus and Infant Developmental Scenario: Self-organization of Goal-directed Behaviors Based on Sensory Constraints
To gain a synthetic understanding of the emergence of babies’ goal-directed behaviors that are important for early development, we constructed an early developmental scenario for self-organization of these behaviors. This scenario is guided by a principle of sensorimotor integration based on sensory constraints. We constructed a neural model to represent our proposed scenario with simplified bu...
متن کاملWireless Sensor Networks Control: Drawing Inspiration from Complex Systems
Recent approaches on the study of networks have exploded over almost all the sciences across the academic spectrum. In this context, the analysis and modeling of networks as well as networked dynamical systems as the Wireless Sensor Networks have attracted considerable interdisciplinary interest. On the contrary, even with the unprecedented evolution of technology, basic issues and fundamental ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2016